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Double-ring network model of the head-direction system
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In the head-direction system, the orientation of an animal’s head in space is encoded internally by persistent
activities of a pool of cells whose firing rates are tuned to the animal’'s directional heading. To maintain an
accurate representation of the heading information when the animal moves, the system integrates horizontal
angular head-velocity signals from the vestibular nuclei and updates the representation of directional heading.
The integration is a difficult process, given that head velocities can vary over a large range and the neural
system is highly nonlinear. Previous models of integration have relied on biologically unrealistic mechanisms,
such as instantaneous changes in synaptic strength, or very fast synaptic dynamics. In this paper, we propose
a different integration model with two populations of neurons, which performs integration based on the
differential input of the vestibular nuclei to these two populations. We mathematically analyze the dynamics of
the model and demonstrate that with carefully tuned synaptic connections it can accurately integrate a large
range of the vestibular input, with potentially slow synapses.
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I. INTRODUCTION desired result. It is unclear whether such nonlinear transfor-

mations actually exist in the head-direction system. More-

In the rat head-direction system, head-velocity inputsover, in this model, to achieve good integration for large
from the vestibular nuclei are integrated to yield a neuralh€ad velocities, very fast synaps@ass than 1 ms for Ref.
representation of the current directional heading with respedt’) had to be assumed. . . .

to the external environment. Neurons of this system, caIIe% In this paper, we present a neural integration model with

head-direction cells, fire maximally when the rat's head face wo_populations of neurons, following original suggestions
one particular directiofl—4]. These cells usually have dif- y Zhang[5]. It integrates the head-velocity signal directly

S : based on the differential vestibular input to these two popu-
ferent preferred directions, and a population of them encodegyj, using potentially slow synapses such as N-methyl-D-
the rat’s directional heading. !

X spartate(NMDA) and Gamma-aminobutyric acid type b
Previously, several network models have been proposea—_;ABAb)_ In this model, the connections made by one ring
to emulate the properties of head-direction cis7]. The 4y responsible for rightward turns and the connections made
work by Zhang focuses on modeling persistent activity Ofpy the other ring are responsible for leftward turns. We math-
head-direction cells during stationary head stdfls The  ematically analyze the dynamics of the network, and find
persistent neural activity is generated in a ring-attractor netthat with carefully chosen synaptic parameters, the network
work with symmetric excitatory and inhibitory synaptic con- is able to achieve integration with high precision.

nections. Independently, he and Redisthal. showed that Although our network is conceptually simpler than previ-
integration is possible by adding asymmetric connections t@us models, we show that using two simple read-out meth-
the attractor networks,6]. The strength of these connections ods, averaging and extracting the maximum, it is possible to
is modulated by head velocity. When the rat moves its headpproximate head-velocity independent tuning curves ob-
to the right, the asymmetric feedback loops between neurorgerved in the postsubiculufPOS and anticipatory re-

are biased toward the right-hand side and so induce a righgponses observed in the anterior dorsal thalafAST)
ward shift of the activity in the attractor network. However, [2,8].
using instantaneous changes in synaptic strength as the inte-
gration mechanism is biologically unrealistic. A more plau-
sible model without multiplicative modulation of connec-  \We model the head-direction system with two populations
tions has been studied recently by Goodridge and Touretzkyf neurons, each of which is organized into a ring network
[7]. There, the head-velocity input has a modulatory influ-structure. We assume the population size in each ring is suf-
ence on the firing of intermittent neurons with spatially offsetficiently large, so that activities of neurons sharing similar
connections rather than on their connection strengths. Howproperties in each ring can be averaged, resulting in a con-
ever, to achieve accurate integration in this model, the headinuous approximation of the discrete neuronal dynamics,
velocity input has to be transformed with some nonlinear

II. DEFINITION OF THE MODEL

function before acting on the network. This nonlinear func- J92(0.9 LS (00 =f,(6.1) (1a
tion was obtained by curve fitting the simulation with the at "o R

as;:(6,t) _ 1b

*Email address: xhx@ai.mit.edu o TS (0.0=1(6,0), (1b)
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FIG. 1. A diagram of the double-ring network. Neurons in each --1
. . . . . . 8
ring receive uniform feedforward inpuby+ Ab to the right ring s
and by—Ab to the left ring. Neurons in each ring also receive  01f
feedback input from neurons in both the rings. Both the intraring
and interring interactions are rotationally invariant and asymmetric
with an offset of ¢ for the intraring interaction, ands for the 0 . . . —
interring interaction. lllustrated in this diagram is the feedback input ~ ° Boe) s 8
to a neuron in the right ring. This neuron receives the strongest
input from the neuron of the same ring at the phase thatsmaller FIG. 2. Neural activity and synaptic activation profiles of two
(solid line), and the neuron of the other ring at the phase that is rings in the stationarya) and the moving staté). The dashed and
larger (dashed ling solid lines correspond to the left and right ring, respectively. In

Panel(a), s; and f, overlap with each othetbecauses,=f, when
which are leaky integrators that model the dynamics of synAb=0), so dos, andf,. The activities are normalized Hy, and
apses with time constant. s;(6,t) ands,(6,t) represent have no units. Ia), Ab=0; in (b) Ab=—0.2. Other parameters
synaptic activatior(e.g., neurotransmitter concentratidn-  J,=-60, K,=-5, J;=K;=80, ¢=80°, #=50°, and 7
dexed byé@ at timet in the left and right ring, respectively. =80 ms.
fi(6,t) andf,(6,t) denote the activities of neurons in the left
and right ring, respectively, which are determined by the Because of the rotational symmetry of the ring network
feedforward inputs and the recurrent synaptic inputsstructure, the function®/y andW, can be decomposed into
weighted by synaptic connection strengths, sums of Fourier series. For simplicity of mathematical treat-
ment, we approximate each of them by the first two Fourier
components,

f':U—ﬂ [Wy(6= 6" = $)s,(6".1)
W(0)=Jy+J.c0s0, Wy(0)=Ky+Kycosf, (3)

n
+Wy(0— 0"+ ¢)s.(0',1)](2m) " 1do’ +by| , (2a)
whereJy, J;, Ko, andK; are synaptic connection param-
eters determining the connection strength of the intraring and
m , , interring connections.
=l | [Wa(6-0'=p)si(6' 1)
+ ll. INTEGRATION
— ' ’ -1 ’
+Ws(0— 0"+ ¢)s(0',1)](2m) " "do" + b, | Depending on the parameters chosen, the networkq.
(2b) may exhibit very different dynamic behavior. We model the

head-direction system with an appropriately chosen param-
eter regime, under which the activities in each ring converge
where[x]"=max(0x) denotes the rectification nonlinearity. tq g stationary bump profile wheab=0 [Fig. 2@], and

b, andb, are the vestibular feedforward inputs that differen-generate a traveling bump with constant form whn 0
tially signal head movements with a common baseline. FO[Fig. 2(p)].

simplicity, we takeb;=bo—Ab and b;=bo+Ab, where The stationary bump represents persistent activities of the
Ab=ADb/by is proportional to angular head velocity. The head-direction cells when the animal is not moving. Because
function Wy represents the synaptic connection profile be-of the rotation symmetry of the ring network, this stationary
tween neurons on the same ring aig between neurons on bump can be located at any position, and thus is able to
different rings. The phase variabjeis the intraring connec- represent an arbitrary head direction. The symmetry also im-
tion offset andy is the interring connection offset. The two plies that the tuning curves of individual head-direction cells
rings form mirror-symmetric copies of each other. A diagramwith respect to the head direction is the same as the profile of
of the two rings is shown in Fig. 1. the stationary bump. Therefore, properties of the bump can
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be used to predict those of the tuning curves, which can belere 6. is the critical half-width beyond whick () is zero,
measured in experiments by single-unit recordings. that is, A cosf,=C (The critical half-width is the same for
WhenAb is nonzero, the stationary bump starts to moveboth rings whemAb=0.) The above set of equations fully
with a velocity depending odAb. The moving of the bump characterizes the stationary bump solution. E5). deter-
reflects the integration process. To achieve accurate integrasines the offseB3 between the two rings, E¢7) determines
tion, several requirements need to be met. the thresholdd., and Eq.(6) determines the amplituda.
First, the angular velocity of the traveling bump needs Once . andA are known,C can be computed accordingly.
to be equal to the angular head velocity. In our model, we Because of the rotational symmetry inherent in the net-

assume thahb is proportional to the head angular velocity. Work, the stationary bump is marginally stable. Its location is

Therefore, for perfect integration, needs to be linearly re- not specified by the steady state equations, but rather by the

lated toAD. Second, the linearity should extend over a largelMtial conditions of the dynamics. The stationary bump is

; : ; ; ; maintained due to the balance in the interaction received
range ofAb. Since the vesUbuJar input is excitatoy, b, from each ring. Whem\b+#0, the neural activities in one
=0, we consider the rangAb|<1. Third, animals can ' ’

S . ... _ring increase at the expense of the other ring, which causes
keep track of head direction even at very high head velocmean imbalance in the interaction between the two rings and

(e.g., up to 700°/s in migeThis requires that the network be drives the activity bump to move around. The dependence of

able to prqduce t_ravehng bumps with high vglo_cmes. Th'sthe traveling velocity on Ab is complicated because of the
can be easily achieved by using a fast synaptic time constant

7. However, with slow synapses such as NMDA or GABAD, nonlinearity of the dynamics. However, \ivhmﬁ) is small we
a large range, precise integration imposes constraints on tf@n characterize the dependence afn Ab by perturbation.
synaptic connection parameters.
Next, we analyze the dynamics of the network, and dem- B. Small head-velocity approximation

onstrate that the above requirements on accurate integration
can be achieved with carefully tuned synaptic parameter%.ra
We start by first finding stationary solutions whéar=0,
and then characterize the functional relationship between

To study the traveling bump solution with velocity we
nsform the coordinate into a moving frame attached to the
bumps traveling at velocity. After the change of variables
S(6,t)=s/(6—vt,t), the original traveling bump corre-

andAb. sponds to a stationary solution in the new coordinate, satis-
: : fying
A. Stationary solution
When the head is not moving\p=0), both rings receive — 7S (0)+S(0)=F(0)
same feedforward input. Suppose the synaptic connection
parameters are chosen such that each ring forms a stationary —70S ' (0)+S(0)=F.(0), 8
bump, which can be written, according to the symmetry, in
the form[see Fig. 23)] whereF,(6) =fF (6—vt,t), F (6)=f*(6—vt,t), and’ de-

notes the differentiation with respect to

When Ab is small,Ab/by<1, inside the excited regime
[F\(6)>0, F,(6)>0], the solutionsS" (#) and S’ () can
be viewed as perturbations f (¢) ands; () of Eq. (4),

whered, represents the current head directigris the offset ~ "€Spectively,
between the two bumps, and * denotes the steady states.

s"(9)=[Acog6—6,)—C]"

st (0)=[Acod 60—+ B)—C]", (4)

Substituting this equation into the steady state of El). SF(8)=(A+ 6A)cod 68— 6y) — (C+ 6C)), 9
s’ (0) =1 () ands; (6)=f}(6), we derive that the param-
etersA, C, and the offsejB should satisfy SF(6)=(A+SA,)cog 6+ B—0y)—(C+8C,). (10
B=arcsind, /Kysing) — i, (5 substituting Eqs(9) and(10) into Eq.(8) and linearizing the
. dynamics, we find) is determined by
A=Dbo[ —(Jo+Kg)fo( ) —cosb.] -, (6)
_ v=J1siN(277A) Y (6.+siN(26,)/2) SA— 2 sind.6C],

1=1f1(6o)[Iscosd+(Ki-Isitp) ), (7) : : e

where the function$, andf, are given by where SA=5A,— 5A, and 6C=45C,— 6C,. To determine

S6A and 6C, we linearize the dynamics of the variable
fol )= %(sin 0,— 0,c0S0,), SF (60— B)— S (8) = 5A cos— 6y)— 5C, from which we find
SA=2[ (k30,— 1)k, —kgzsinf,] Ab, (12)

1 1
F1(0c)= Z[ef Es'r‘za")} 5C=2ky[ (Kgfe— 1)ko—kssin6] *Ab, (13
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(@ (b) to a traveling bump solution in the right ring due to the
500 S ‘ asymmetric recurrent connections. However, the traveling
—_— ulation ’ 2000 . . . .
= N = velocity is fixed, independent of the exact valueAd, as
8 7 g 10 } long as it is above a threshold value. This happens because
g o 8 o the intraring synaptic connection strength can be separated
s 4 S 1000 into two terms: one is symmetric and the other one is anti-
> 1 > .
g symmetric as follows:
’ -2000
-500 =
05 g %5 ! TS ey, % W(0)=Jo+Jico8 6~ o)

—_
2]
<
—
[}
~

=Jg+J,1C0S¢h cosh+J;Sing sind

3000 == Simulati
1000 =Wg(0) —tanpWg( 0),
0

5000

g o0 )
g £ 1000 whereWs( ) = J,+ J;c0S¢ COSH.
> ” -2000 Now, let s*(6) be the steady solution of a ring network
S0k’ WL with symmetric connection§Vs(6). It follows that s* (6
bl Abib, —tang¢/ rt) is the solution of a ring network with connec-

tions W(6), which can be shown by differentiating’ (6

FIG. 3. Moving bump velocity as a function of the inpuAb . . . S
for different synaptic parameters. The slope is indicated as the tané/t). Hence, the saturating velocit, is given by

dashed lines. All these curves saturate whih| is large, with the —tang/r (15)
saturating velocity indicated by the dotted line. Paiaglshows the Usat -

result whenK;<J; (K;=70, ¢=60). Panel(b) shows the result
whenK,>J; (K;=100). Linearity of thew —Ab curve over a wide
range is achieved wheld; =J; as indicated in Panelg) and (d).
The range of linearity is related to the synaptic variaklg as

To make the saturation velocity high, we can use a small
synaptic time constant, or choose the phase varialfeto

be close torr/2, which seems necessary if slow synapses are
shown in Panelc) for K,=— 20 and Paneld) for Ko=—5. If not involved in the integra_tion_of the head-direction system. For
otherwise stated, the parameters used Jye —60, J,=80, ¢  the parameters used in Figsch 3(d), we use$=80° and
=80°, y=50°, andr=80 ms. 7=80 ms, and find)s,=4062°/sec.

Similarly, whenAb is large negative over some threshold

where k;=[J;cosp—K cos@+B)] L, ko=[6.+sin(26.)/2 value, the right ring is inactivated, and the traveling bump in
—2mk,](2 sind) %, and ky=(Jo—K,)/ . By substituting the left ring moves in opposite direction with the speed satu-

SA and 5C into Eq. (11), we find rated atv g, also[see Fig. &)].
_ . So far, our characterization of the- Ab relationship has
v=2kJ;sin(7A) " (k30— 1)k —kgsin 6]~ *Ab. been based on special cases. Next, we analyze the dynamics

(14 of the double-ring network more systematically by Fourier
. . transforming the original continuous field dynamics into one
Equation(14) relates the velocity of the two bumps 10 joqerined by a set of order parameters. Based on these order
the differential vestibular Inpu.tb whenAb<1. This linear parameter dynamicsl we ana|yze the solution for trave“ng
v—Ab relationship is plotted in Fig. 3 for various synaptic humps, and discuss how to choose synaptic parameters to
parameters, and is compared with the results obtained fromchieve a large linear range like the one plotted in Fig).3
numerical simulations. There is a good agreement with Eq.

(14) only in a small region around the origiiFigs. 3a),
3(b)]. As we have discussed, the desited Ab curve should V- ANALYSIS IN TERMS OF FOURIER MODES
be linear over entire range &b (JAb|<1). Such a large- The double-ring network presented here has two special

range linear regime is shown in Fig(d3. In Sec. IVA we  properties that aid mathematical treatments. First, it is trans-

will address how to choose synaptic parameters to achiewviétion invariant with period zr. Second, the synaptic inter-

this result. action function involves only the first two Fourier compo-
One observation of the— Ab curve is that saturates in nents. Therefore, we can simplify the original dynamics

both ends whefAb| is sufficiently large. The saturation ve- significantly by performing a Fourier transform. Next we

locity sets a limit on the largest velocity at which the bumppresent the analysis, following the similar treatments of

can move. Next we calculate this saturation velocity, andiansel and Sompolinsiky].

discuss how to choose synaptic parameters such that the Let us define the order parameters

saturation velocity is sufficiently large.

r?(t)=f_ﬁ s.(60,t)(2m) " 1do, (16)

C. Saturating velocity

WhenAb is sufficiently large, the left ring becomes inac-
tive at some point. In this case, the network dynamics are r-l(t)= f” s(0.0exdi(—W,(1)] (2m)1ds, (17)
determined only by neurons in the right ring. This still leads ! . ' ’
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02 & ring — Denote the half-width of the positivg(6,t) domain by
1 6f, and that of the positivé, (6,t) domain byé;. If f; is a
rectified bump, we haves®=arccos¢-1%/11) for i=I,r.
o.1f Next we assumed; and ¢; are given, in which case the
original dynamics can be viewed as linear. Based on this, we
perform a Fourier transform of the network dynamics Egs.
plame===" " - (13 and (1b) and derive the dynamics of the order param-
0 ! Y eters as follows:
°2r Right ring - fsr Ti’i():_ri()dl—lil(t)fo( Hic)' (258)
v —_—r
ol g i = —ri+ 110 (67)cog b —W)), (25b)
1
’ ~ |1 . .
Il N il =1 fL(6F) sin(d— ), (259
- 1 [
% 2 g 'd, 4 5 6 wherei=I,r. Similarly we can write down the dynamics of
r r 6 (rad)

the higher-order Fourier components. However, the above set

FIG. 4. A snapshot of the traveling bumps in two rings. The Of dynamics is decoupled from the higher-order components,
dashed lines denote the synaptic variables and the solid lines repréNd can be solved independently. In particular, we are inter-
sent the firing rate, and ¥, are the phases of the second-order €sted in the traveling bump solutions in both rings, which
Fourier components of(6) ands,(6), respectively. The phase can be described by
variable®, is defined by the peak location 6f(#), and®, is the

peak location off (). rP=11t)fo(65), (26)
wherei=1,r is the index of the left and right rings’ rep- ri=11(t) (6% cog ®;— W), (27)
resents the mean synaptic activation of neurons in each ring.
The phaseVl;(t) is used to makeil(t) a real number, or in v=tan®;—-V¥,), (28
other wordsr} is the amplitude of the first Fourier modes
andW;(t) is the phaseFig. 4). wherev is the velocity of the traveling bumps. Given the
In terms of these order parameters, the neural activitie¥estibular inputAb, the moving velocity of the bumps can
Eq. (2) can be written as be determined numerically from the above set of algebraic
equations. Let3=®,—¥,—y, and 6=, — ¥, =d —V,
f,(0,0)=[12+1cog 6—D))]", (18 =atan(rv). This set of algebraic equations can be further
simplified into a set of four self-consistent equations with
f.(0,t)=[1%+1 cog 6—®,)]", (19  unknown variable®, 8, 6°, and 6°:
where Kqrisin(B)+J,risin( 6+ ¢)=0, (29a
19=Jor2+ Korl+by, (20)

Jyrisin(6— ¢)+Kyrisin(26— B)=0, (29b)
IF=Jiricog @ — W~ ¢) +Kyrfcog @ — ¥, + ),

21) I1=K,ricoq B)+Jiricog 6+ ¢), (290
IP=KorP+Jor?+by, (22 I1=durfcod 9= ¢)+Karpeod20-4), (299
1=K, ricoq @, — ¥, — )+ Jir lcog @, — ¥, + ). wherel!, I, rl, andr} can be written as functions d@if
(23) andé;.
The phase variable®, and ®, are the peak of the neural 11=[b,z,— b Kofo( 6 [KEFo(6S) Fo( 65— 22,17,
activities in the left and right ring, respectivelgee Fig. 4. (303
They satisfy
- L It=[biz, — b Kofo( 1) I[KGFo 6 fol 67) — 2121 Y,
Jarisin(@ =W, —¢) +Kyrsin(® =¥, +¢) =0, (30b)
(2439
with z;=Jofo(6°) +cosé for i=I,r, and the order param-
Korisin(®,— W, — )+ J;rtsin(®, — ¥+ ¢) =0. eterr! can be derived from E¢27). Equation(29) can be

(24b) solved numerically.
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A. Linearity when J,=K, So=2J;sin¢ sin .7 1 — (Jo+ Ko) fo( fc) — cosby]

One critical requirement on our model to achieve accurate X[ 77— 0(J )]
integration is that the velocity of the traveling bumps should civo o
be proportional to the vestibular input over all possible ~tangsing.r [ —(Jo+Ko)tand][ 7+ (Jo—Ko) 6] 1
ranges ofAb. Our simulation study shows that the network
achieves excellent linearity whehh =K (see Fig. 3 for dif-
ferent choices oK, andJ;). One typical result is shown in
Fig. 3(d). Next we present the Aanaly3|s tO.jUStIfy this result. expansion  of fo(6.)~(2J,cos¢) and assumed|J

As we have stated, the—Ab curve typ|caII¥ follows a Ko| 6>, which holds whenly— K, is large negative.
sigmoidal shape, saturating on both ends whie| is larger  The above result indicates that in this approximation,ithe
than a certain critical valuab.. To measure the quality of — Ap ratio at the critical value is the same as the slSpeat
the linearity over the nonsaturated regime &, we can the origin. This explains the excellent linearity achieved
simply compare the difference between the slope at the oriwhenJ;=Kj.

gin and the velocity-input ratio at the critical point,  Another requirement on the integration of the head-
Vsarl ADg. direction system is that the linearity should cover the entire

First, we determine the critical b, that gives rise to the POssible range ohb. From Eq.(32), we have the threshold
saturation velocity. At the criticahb,, one ring becomes differential inputAb.~|(Ko— Jo)/(Ko+Jo)|. Provided that
inactive, and with no Ioss of generality we assume the leftl, is large negative, to guarantad.>1, K, has to be small
ring is inactive, that ISr| =0, ;=0. From Eq.(29a, we negative or positive, which implies that the interring global
have 9= —¢ and S=26, and thereforel 1=J,r! and I} interaction should be weak inhibitory or excitatory.Kf i?
—K,rl. Substituting these into E430), we find Ab, to be ~ |&r9€ negative, the saturation happens at a point whien

<1 [Fig. 3(0)].
Abe=[(Ko—Jo)fo( 6%) + K, /J;—coso] Iin the following, we consider dynamics for the casge
=K.

~tang(Jo+Ko)[ 7(Ko—Jo)1 .

In the above approximation, we have used the asymptotic

X[(Jo+Ko)fo(0%)+Ky/I1+cosh] ™1, (31
B. Solution of the network whenJ;=K;

WhenJ; =K, the set of equations used to determine the
thresholds and velocity can be simplified. After reordering
and simplifying Eq(29), we find thatef, 67, and ¢ are
determined by

where ¢; satisfiesJ;f,(65)cosp=1, from which 6° can be
determined.

Typically 6¢ can only be solved by numerical methods.
However, an approximate value @ can be found by
asymptotic expansion of the functiér(x) ~x% (3). Simi- f1(6°)sSin(0— )+ f1(6°)sin( 0+ ¢)=0, (33)
larly, the functionfy(x) can be approximated by®/(37). v o

o o 7
Therefore, fo(6;)~1/(J,cos¢). Substituting this into Eq. £1(6°)cOSO cOg H— ) + Ky F1(65)cos cog 0+ ¢) =1,

(31), we find (34
A~ [Ko—Jg+ J1c08h(Ky 13, cost)] [(Jo+Ko) (ol 6F) + fo( 65)) +cosél+cosbf]AD
r
X[JO+ K0+J1COS¢(K1/J1+COS&C)]_l :(‘JO_KO)(fO(G?)_fO(elc))—’_COSG?_COSHCy
; .
(39

In our network, the phase variabdeis chosen to be close to ¢ can be solved for using E¢33). Its dependence off and
m/2 to get a large saturation velocity, adglis large negative ¢ is given by
to guarantee the stability of the network. Therefore, the terms

containing multiplying cog in the above are small and can y, =tang/r=tan[ f;(6°) — f( 6%) ][ 7(f1( 6%) +f1(6)] L.
be neglected in an approximation. After these considerations, (36)

the ratio between the velocity and the differential input at the
critical value can be approximated by Substituting this into Eq(34), we derive

J2F2(60) +£2(6°) + 2 1(6°) f1(6F)cog2) ]

Vsa/ Abc=tang(Jo+Ko)[ 7(Ko—Jp)1 1. (32
=tarf [ f1(6F)— (69 12[F1(67) +Fo(65)] %+1.

On the other hand, whed, =K, the slope at the origin The above and Eq35) consists of two self-consistent equa-
derived from Eq(14) is tions, from which the threshold widthg® and 67 can be
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FIG. 5. Results from the theoretical calculations wider K ;.

The velocity of the traveling bumps as a function of the input is
plotted in(a), which verifies the theoretical and the simulation re-
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V. STABILITY

The network is translation invariant. There are potential
homogeneous solutions. Assureagd)=u, ands,(8)=u,,
and substitute them into Edql). We find u;=Jgu,+Kgu,
+b, andu,=Jqu, +Kpu,+b,, which leads to the homoge-
neous solutions

Ur=bo(1-Jg—Ko) 1+ Ab(1-Jy+Ky) 1, (39

U=bo(1—Jg—Kg) " 1=Ab(1-Jg+Kgy) "L (40
If Jo+Kg<1, thenu, andu, are both positive, so the homo-
geneous solutions exist.

Our network works in a regime where a stationary bump
develops wheAb=0 and moves wheAb+0. To guaran-
tee that the network works in such a regime, we have to
choose synaptic parameters such that the homogeneous solu-
tion becomes unstable.

The stability of the homogeneous solution can be easily
characterized by perturbing the dynamics around the homo-

sults. The width of the tuning curves are shown as a function of th%eneous solution. In terms of the first two Fourier compo-

input in (b). The peak firing rates of the two bumps are modulated

by Ab, with the peak rate for each ring shown () and the dif-
ference between them shown (id.

determined for each differential inputb. Using Eq.(36),

we can then determine the velocity of the moving bumps for

eachAD.
The results of this calculation are shown in Figa)Sand

nents, the perturbed dynamics can be written as

are compared with the simulation results, which verify the

theoretical calculations.

The threshold width® and 67 characterize the width of

the tuning curves of the head directions. Its dependence on

the head moving velocity can be measured experimentally.

We plot the change of them as a functionAdb in Fig. 5(b)

obtained from the above calculation. Besides threshol
width, another characterization of the neural responses is th
peak firing rates of the traveling bumps in each ring, which

can be written as
P,=1}(1—cos#), (37
P,=1{(1—coséf), (38)

for the right and left ring, respectively. Here,

=2Ab{(Ko—Jo)[fo(67) —fo(61)]

+coséf —coséf} L.

The result is plotted in Fig.(8), 5(d). It shows thatP, and

76r0=(Jg—1) 8P+ Koor?, (41)
76r0=(Jo— 1) 8r0+Koor?, (42

for the first Fourier component, and
76rt=(J1/2 cosp—1)Sr}+K,/2cosport, (43
7ort=(J31/2 cosp—1)sri+ K 2cospsrl, (44

r the second Fourier component. The condition for Egs.
1) and (42) to be stable isly+|Ko|<2. This is typically
satisfied if we choosd, to be large negative. Far andr}

to be stable requires thatcos#<1, provided thal; =K, as

we have constrained. Therefore, to break the stability of the
homogeneous solution, we can chodse- 1/cosq.

The stability of the stationary bump or traveling bumps
can be analyzed by perturbing the dynamics defined by Eq.
(25 around the stationary or traveling bump solutions. The
perturbed dynamics involves many terms, and the details are
not included in this paper. The phase diagram of solutions

when Ab=0 obtained from simulation is shown in Fig. 6.
This phase diagram does not include all possible solutions
among all range of synaptic parameters. For example, if we
we choose parameters such tKgt<<J;sin ¢, the stationary
bump solution will not exist and the network will yield a
lurching bump solution whose shape changes in time. For the

stability of the traveling bump solutions wheXb#0, the
bifurcation line from the homogeneous solution is the same

P, are approximately linearly related to the differential inputas the one shown in Fig. 6, but the boundary where the

Ab.

traveling bump solution diverge is different for differehb.
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FIG. 6. Phase diagram whe&xb=0. K,;=J,, and other param- e e

etersKo=—5, ¢=80°, and¢=50°. The marginal phase is the FIG. 7. Snapshots of the activities on the two rings for counter-
desired parameter regime, in which a stationary bump developsilockwise (CCW) head rotation(a) and clockwise rotatiofCW)
although the location of the bump can be arbitrary. (b), respectively. Reading out the activities by averaging and by a
maximum operatiorc, d).
VI. ADT AND POS HEAD-DIRECTION CELLS

Head-direction cells have been found in many brain areas, Suppose POS cells read out activities of the double ring
each having different tuning properties. Lesion studies and/Sing an averaging operatioy(,0) = 1/ f,(6) + f,(6)] (Fig.
anatomical evidence suggest that the core attractor network. In contrast to those of ADT cells, the tuning curves of
of the head-direction system is located in the lateral mamPOS cells are not significantly biased toward either direc-
millary nucleus(LMN) and dorsal tegmental nucle(3TN),  tions, because averaging is a symmetric operation and all
whereas downstream nuclei such as ADT and POS receivieformation about the direction of head rotations is lost.
feedforward input from the attractor netwdirk0,11].

As shown in the preceding sections, the activities of neu-
rons in the double-ring network are not only tuned to head v/ DISCUSSION ON SYNAPTIC PARAMETERS
direction, but modulated by head velocity al¢see Fig.
5c,d, which is consistent with the properties of cells found Here we discuss how the various connection parameters
in LMN and DTN [12,13. contribute to the double-ring network to function as an inte-

Head-direction cells in two downstream nuclei ADT and grator. In particular, we discuss how parameters have to be
POS have very different tuning properties. During headuned for proper integration to occur over a largein and
movement, tuning curves in ADT are usually skewed within v.
preferred directions tilted toward the directions in the future. (i) 7 By assumption the synaptic time constans large.

In contrast, POS cells usually have similar tuning curves; has the simplest effect of all parameters on the integrator
irrespective of the directions of head movemgit,15]. properties. According to Eq14), 7 scales the range af.

Let us assume ADT and POS read out responses from tHgotice that if 7 were small, a large range af could be
double-ring network. Two simple readout schemes are th#ivially achieved. We show here how to achieve proper in-
average and maximum of the activities in the two rings.tegration with larger.

Next, we analyze these two simple readout methods of the (ii) ¢: The connection offset) between neurons receiv-
firing ratesf, andf, . We find that the two readout methods ing similar vestibular input is the sole parameter besides
can indeed approximate response behavior resembling that tifat determines the saturating head velocity, beyond which
ADT and POS neurongl4-16,6,1. integration is impossible. According to E(L5), the saturat-

Suppose ADT cells read out activities of the double ringing velocity is large if¢ is close to 90°(we want the satu-
using a maximum operatiorg( ) =max(f,(6),f,(#)) (see rating velocity to be large In other words, for good integra-
Fig. 7). Recall that there is an activity offset between the twotion, excitatory connections should be stronge@r
rings[cf. Eq. (5)]. When the head rotates counterclockwise,inhibitory connections weakgsfor neuron pairs with pre-
the activity on the left ring is larger than the activity on the ferred head directions differing by a little less than 90°.
right ring, so the tuning of( ) is biased to the right. Simi- (iii) ¢: The connection offseyy between neurons receiv-
larly, for clockwise turnsz(0) is biased to the left. In either ing different vestibular input only affects the shift in activity
cases, the tuning curve is skewed toward head directions iprofiles of the two rings. It determines how much the tuning
the future, which could be a mechanism for anticipatory codcurves of the ADT head-direction cells are tilted, that is, the
ing. anticipatory time of the ADT cells.
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(iv) Ko and Ky: The interring connections should be move around. With carefully chosen synaptic parameters, we
mainly weak inhibitory, or excitatory, which implies thiity =~ demonstrate that the integration can be achieved with high
should not be too negative. The intuitive reason is the folprecision.
lowing. We want the integration to be as linear &b as Synapses with slow dynamics are important for attractor
possible, which means that we want our linear expansiongiodels described here or previously. There are two reasons
Egs.(9) and(10) to deviate as little as possible from Hg).  for this. First, all the attractor models are described in terms
Hence, the differential gain between the two rings should bef firing rate of neurons. These rate model dynamics can be
small, which is the case when the two rings excite each othederived from spiking neuronal dynamics using the method of
The interring excitation makes sure, even for large values ofiveraging 17], which is valid only for slow synapses. Sec-
Ab, that there are comparable activity levels on the twoond, it has been shown that the directional tuning properties
rings. This is one of the main points of this study. of head-direction cells can be maintained in the dark for

(v) Jp andJ;: The intraring connections should be mainly several minutes, which contrasts significantly with the time
inhibitory, which implies thatl, should be strongly negative. constant of individual synapses, which is in the order of 1 ms
The reason for this is that inhibition is necessary to result irfor fast and 100 ms for slow synapses. This requires that
proper and stable integration. Since inhibition cannot comeéynaptic connection parameters of the attractor models need
from the interring connections, it has to come frdgm No-  to be precisely tuned. Slow synapses weaken the precise tun-
tice also that according to E¢7), J; cannot be much larger ing requirement.
thanK,. If J;>K,/sin¢, the model cannot model the per-  The head-direction system is also influenced significantly

sistent activities for no head-movement case. by visual landmark$18]. It is believed that the visual input
is used to calibrate the directional heading, and also works as
VIIl. CONCLUSION AND REMARKS a feedback signal to adjust synaptic parameters for achieving

accurate integration. We are currently investigating learning

We have presented a different model for neural integrationules that use the visual feedback to tune synaptic param-
in the head-direction system with potentially slow synapseseters. The results will be reported elsewhere.
The model is essentially a push-pull model with two popu-
lations of neurons receiving differential vestibular inputs. ACKNOWLEDGMENTS
The difference in input breaks the balance between the inter-
actions of two rings that is maintained during stationary head We acknowledge helpful discussions with Dr. M.
states, and causes activity bump developed in both rings tGoldman.
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