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Double-ring network model of the head-direction system
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In the head-direction system, the orientation of an animal’s head in space is encoded internally by persistent
activities of a pool of cells whose firing rates are tuned to the animal’s directional heading. To maintain an
accurate representation of the heading information when the animal moves, the system integrates horizontal
angular head-velocity signals from the vestibular nuclei and updates the representation of directional heading.
The integration is a difficult process, given that head velocities can vary over a large range and the neural
system is highly nonlinear. Previous models of integration have relied on biologically unrealistic mechanisms,
such as instantaneous changes in synaptic strength, or very fast synaptic dynamics. In this paper, we propose
a different integration model with two populations of neurons, which performs integration based on the
differential input of the vestibular nuclei to these two populations. We mathematically analyze the dynamics of
the model and demonstrate that with carefully tuned synaptic connections it can accurately integrate a large
range of the vestibular input, with potentially slow synapses.
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I. INTRODUCTION

In the rat head-direction system, head-velocity inp
from the vestibular nuclei are integrated to yield a neu
representation of the current directional heading with resp
to the external environment. Neurons of this system, ca
head-direction cells, fire maximally when the rat’s head fa
one particular direction@1–4#. These cells usually have dif
ferent preferred directions, and a population of them enco
the rat’s directional heading.

Previously, several network models have been propo
to emulate the properties of head-direction cells@5–7#. The
work by Zhang focuses on modeling persistent activity
head-direction cells during stationary head states@5#. The
persistent neural activity is generated in a ring-attractor n
work with symmetric excitatory and inhibitory synaptic co
nections. Independently, he and Redishet al. showed that
integration is possible by adding asymmetric connection
the attractor network@5,6#. The strength of these connection
is modulated by head velocity. When the rat moves its h
to the right, the asymmetric feedback loops between neu
are biased toward the right-hand side and so induce a ri
ward shift of the activity in the attractor network. Howeve
using instantaneous changes in synaptic strength as the
gration mechanism is biologically unrealistic. A more pla
sible model without multiplicative modulation of conne
tions has been studied recently by Goodridge and Toure
@7#. There, the head-velocity input has a modulatory infl
ence on the firing of intermittent neurons with spatially offs
connections rather than on their connection strengths. H
ever, to achieve accurate integration in this model, the he
velocity input has to be transformed with some nonline
function before acting on the network. This nonlinear fun
tion was obtained by curve fitting the simulation with th
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desired result. It is unclear whether such nonlinear trans
mations actually exist in the head-direction system. Mo
over, in this model, to achieve good integration for lar
head velocities, very fast synapses~less than 1 ms for Ref
@7#! had to be assumed.

In this paper, we present a neural integration model w
two populations of neurons, following original suggestio
by Zhang@5#. It integrates the head-velocity signal direct
based on the differential vestibular input to these two po
lations, using potentially slow synapses such as N-methyl
aspartate~NMDA ! and Gamma-aminobutyric acid type
~GABAb!. In this model, the connections made by one ri
are responsible for rightward turns and the connections m
by the other ring are responsible for leftward turns. We ma
ematically analyze the dynamics of the network, and fi
that with carefully chosen synaptic parameters, the netw
is able to achieve integration with high precision.

Although our network is conceptually simpler than prev
ous models, we show that using two simple read-out me
ods, averaging and extracting the maximum, it is possible
approximate head-velocity independent tuning curves
served in the postsubiculum~POS! and anticipatory re-
sponses observed in the anterior dorsal thalamus~ADT!
@2,8#.

II. DEFINITION OF THE MODEL

We model the head-direction system with two populatio
of neurons, each of which is organized into a ring netwo
structure. We assume the population size in each ring is
ficiently large, so that activities of neurons sharing simi
properties in each ring can be averaged, resulting in a c
tinuous approximation of the discrete neuronal dynamics

t
]sl~u,t !

]t
1sl~u,t !5 f l~u,t !, ~1a!

t
]sr~u,t !

]t
1sr~u,t !5 f r~u,t !, ~1b!
©2002 The American Physical Society02-1
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which are leaky integrators that model the dynamics of s
apses with time constantt. sl(u,t) and sr(u,t) represent
synaptic activation~e.g., neurotransmitter concentration! in-
dexed byu at time t in the left and right ring, respectively
f l(u,t) and f r(u,t) denote the activities of neurons in the le
and right ring, respectively, which are determined by
feedforward inputs and the recurrent synaptic inp
weighted by synaptic connection strengths,

f l5F E
2p

p

@Ws~u2u82f!sl~u8,t !

1Wd~u2u81c!sr~u8,t !#~2p!21du81bl G1

, ~2a!

f r5F E
2p

p

@Wd~u2u82c!sl~u8,t !

1Ws~u2u81f!sr~u8,t !#~2p!21du81br G1

,

~2b!

where@x#1[max(0,x) denotes the rectification nonlinearit
bl andbr are the vestibular feedforward inputs that differe
tially signal head movements with a common baseline.
simplicity, we takebl5b02Db and br5b01Db, where
Db̂[Db/b0 is proportional to angular head velocity. Th
function Ws represents the synaptic connection profile b
tween neurons on the same ring andWd between neurons on
different rings. The phase variablef is the intraring connec-
tion offset andc is the interring connection offset. The tw
rings form mirror-symmetric copies of each other. A diagra
of the two rings is shown in Fig. 1.

FIG. 1. A diagram of the double-ring network. Neurons in ea
ring receive uniform feedforward input,b01Db to the right ring
and b02Db to the left ring. Neurons in each ring also recei
feedback input from neurons in both the rings. Both the intrar
and interring interactions are rotationally invariant and asymme
with an offset of f for the intraring interaction, andc for the
interring interaction. Illustrated in this diagram is the feedback in
to a neuron in the right ring. This neuron receives the strong
input from the neuron of the same ring at the phase that isf smaller
~solid line!, and the neuron of the other ring at the phase that ic
larger ~dashed line!.
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Because of the rotational symmetry of the ring netwo
structure, the functionsWd andWs can be decomposed int
sums of Fourier series. For simplicity of mathematical tre
ment, we approximate each of them by the first two Four
components,

Ws~u!5J01J1cosu, Wd~u!5K01K1cosu, ~3!

whereJ0 , J1 , K0, and K1 are synaptic connection param
eters determining the connection strength of the intraring
interring connections.

III. INTEGRATION

Depending on the parameters chosen, the network Eq~1!
may exhibit very different dynamic behavior. We model t
head-direction system with an appropriately chosen par
eter regime, under which the activities in each ring conve
to a stationary bump profile whenDb50 @Fig. 2~a!#, and
generate a traveling bump with constant form whenDbÞ0
@Fig. 2~b!#.

The stationary bump represents persistent activities of
head-direction cells when the animal is not moving. Beca
of the rotation symmetry of the ring network, this stationa
bump can be located at any position, and thus is able
represent an arbitrary head direction. The symmetry also
plies that the tuning curves of individual head-direction ce
with respect to the head direction is the same as the profil
the stationary bump. Therefore, properties of the bump

g
ic

t
st

FIG. 2. Neural activity and synaptic activation profiles of tw
rings in the stationary~a! and the moving state~b!. The dashed and
solid lines correspond to the left and right ring, respectively.
Panel~a!, sl and f l overlap with each other~becausesl5 f l when

Db̂50), so dosr and f r . The activities are normalized byb0 and

have no units. In~a!, Db̂50; in ~b! Db̂520.2. Other parameters
J05260, K0525, J15K1580, f580°, c550°, and t
580 ms.
2-2
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DOUBLE-RING NETWORK MODEL OF THE HEAD- . . . PHYSICAL REVIEW E 66, 041902 ~2002!
be used to predict those of the tuning curves, which can
measured in experiments by single-unit recordings.

WhenDb is nonzero, the stationary bump starts to mo
with a velocity depending onDb. The moving of the bump
reflects the integration process. To achieve accurate inte
tion, several requirements need to be met.

First, the angular velocityv of the traveling bump need
to be equal to the angular head velocity. In our model,
assume thatDb̂ is proportional to the head angular velocit
Therefore, for perfect integration,v needs to be linearly re
lated toDb̂. Second, the linearity should extend over a lar
range ofDb. Since the vestibular input is excitatory,bl ,br

>0, we consider the rangeuDb̂u<1. Third, animals can
keep track of head direction even at very high head veloci
~e.g., up to 700°/s in mice!. This requires that the network b
able to produce traveling bumps with high velocities. Th
can be easily achieved by using a fast synaptic time cons
t. However, with slow synapses such as NMDA or GABA
a large range, precise integration imposes constraints on
synaptic connection parameters.

Next, we analyze the dynamics of the network, and de
onstrate that the above requirements on accurate integr
can be achieved with carefully tuned synaptic paramet
We start by first finding stationary solutions whenDb50,
and then characterize the functional relationship betweev
andDb.

A. Stationary solution

When the head is not moving (Db50), both rings receive
same feedforward input. Suppose the synaptic connec
parameters are chosen such that each ring forms a statio
bump, which can be written, according to the symmetry,
the form @see Fig. 2~a!#

sl* ~u!5@A cos~u2u0!2C#1

sr* ~u!5@A cos~u2u01b!2C#1, ~4!

whereu0 represents the current head direction,b is the offset
between the two bumps, and * denotes the steady st
Substituting this equation into the steady state of Eq.~1!
sl* (u)5 f l* (u) andsr* (u)5 f r* (u), we derive that the param
etersA, C, and the offsetb should satisfy

b5arcsin~J1 /K1sinf!2c, ~5!

A5b0@2~J01K0! f 0~uc!2cosuc#
21, ~6!

15 f 1~uc!@J1cosf1~K1
22J1

2sin2f!1/2#, ~7!

where the functionsf 0 and f 1 are given by

f 0~uc!5
1

p
~sinuc2uccosuc!,

f 1~uc!5
1

2p Fuc2
1

2
sin~2uc!G .
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Hereuc is the critical half-width beyond whichf l(u) is zero,
that is, A cosuc5C ~The critical half-width is the same fo
both rings whenDb50.! The above set of equations full
characterizes the stationary bump solution. Eq.~5! deter-
mines the offsetb between the two rings, Eq.~7! determines
the thresholduc , and Eq.~6! determines the amplitudeA.
Onceuc andA are known,C can be computed accordingly

Because of the rotational symmetry inherent in the n
work, the stationary bump is marginally stable. Its location
not specified by the steady state equations, but rather by
initial conditions of the dynamics. The stationary bump
maintained due to the balance in the interaction recei
from each ring. WhenDbÞ0, the neural activities in one
ring increase at the expense of the other ring, which cau
an imbalance in the interaction between the two rings a
drives the activity bump to move around. The dependenc
the traveling velocityv on Db is complicated because of th
nonlinearity of the dynamics. However, whenDb̂ is small we
can characterize the dependence ofv on Db̂ by perturbation.

B. Small head-velocity approximation

To study the traveling bump solution with velocityv, we
transform the coordinate into a moving frame attached to
bumps traveling at velocityv. After the change of variables
Sl(u,t)5sl(u2vt,t), the original traveling bump corre
sponds to a stationary solution in the new coordinate, sa
fying

2tvSl* 8~u!1Sl* ~u!5Fl~u!

2tvSr* 8~u!1Sr* ~u!5Fr~u!, ~8!

whereFl(u)5 f l* (u2vt,t), Fr(u)5 f r* (u2vt,t), and8 de-
notes the differentiation with respect tou.

WhenDb̂ is small,Db/b0!1, inside the excited regime
@Fl(u).0, Fr(u).0], the solutionsSl* (u) and Sr* (u) can
be viewed as perturbations ofsl* (u) and sr* (u) of Eq. ~4!,
respectively,

Sl* ~u!5~A1dAl !cos~u2u0!2~C1dCl !, ~9!

Sr* ~u!5~A1dAr !cos~u1b2u0!2~C1dCr !. ~10!

Substituting Eqs.~9! and~10! into Eq.~8! and linearizing the
dynamics, we findv is determined by

v5J1sinf~2ptA!21@~uc1sin~2uc!/2!dA22 sinucdC#,
~11!

where dA[dAr2dAl and dC[dCr2dCl . To determine
dA and dC, we linearize the dynamics of the variab
Sr* (u2b)2Sl* (u)5dA cos(u2u0)2dC, from which we find

dA52@~k3uc21!k22k3sinuc#
21Db, ~12!

dC52k2@~k3uc21!k22k3sinuc#
21Db, ~13!
2-3
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XIE, HAHNLOSER, AND SEUNG PHYSICAL REVIEW E66, 041902 ~2002!
where k15@J1cosf2K1cos(c1b)#21, k25@uc1sin(2uc)/2
22pk1#(2 sinuc)

21, and k35(J02K0)/p. By substituting
dA anddC into Eq. ~11!, we find

v52k1J1sinf~tA!21@~k3uc21!k22k3sinuc#
21Db.

~14!

Equation~14! relates the velocityv of the two bumps to
the differential vestibular inputDb whenDb̂!1. This linear
v2Db relationship is plotted in Fig. 3 for various synapt
parameters, and is compared with the results obtained f
numerical simulations. There is a good agreement with
~14! only in a small region around the origin@Figs. 3~a!,
3~b!#. As we have discussed, the desiredv2Db curve should
be linear over entire range ofDb̂ (uDb̂u<1). Such a large-
range linear regime is shown in Fig. 3~d!. In Sec. IV A we
will address how to choose synaptic parameters to ach
this result.

One observation of thev2Db curve is thatv saturates in
both ends whenuDbu is sufficiently large. The saturation ve
locity sets a limit on the largest velocity at which the bum
can move. Next we calculate this saturation velocity, a
discuss how to choose synaptic parameters such that
saturation velocity is sufficiently large.

C. Saturating velocity

WhenDb is sufficiently large, the left ring becomes ina
tive at some point. In this case, the network dynamics
determined only by neurons in the right ring. This still lea

FIG. 3. Moving bump velocityv as a function of the inputDb
for different synaptic parameters. The slope is indicated as
dashed lines. All these curves saturate whenuDbu is large, with the
saturating velocity indicated by the dotted line. Panel~a! shows the
result whenK1,J1 (K1570, f560). Panel~b! shows the result
whenK1.J1 (K15100). Linearity of thev2Db curve over a wide
range is achieved whenK15J1 as indicated in Panels~c! and ~d!.
The range of linearity is related to the synaptic variableK0 as
shown in Panel~c! for K05220 and Panel~d! for K0525. If not
otherwise stated, the parameters used areJ05260, J1580, f
580°, c550°, andt580 ms.
04190
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to a traveling bump solution in the right ring due to th
asymmetric recurrent connections. However, the trave
velocity is fixed, independent of the exact value ofDb, as
long as it is above a threshold value. This happens beca
the intraring synaptic connection strength can be separ
into two terms: one is symmetric and the other one is a
symmetric as follows:

W~u!5J01J1cos~u2f!

5J01J1cosf cosu1J1sinf sinu

5W̃S~u!2tanfW̃S8~u!,

whereW̃S(u)5J01J1cosf cosu.
Now, let s* (u) be the steady solution of a ring networ

with symmetric connectionsW̃S(u). It follows that s* (u
2tanf/tt) is the solution of a ring network with connec
tions W(u), which can be shown by differentiatings* (u
2tanf/tt). Hence, the saturating velocityvsat is given by

vsat5tanf/t. ~15!

To make the saturation velocity high, we can use a sm
synaptic time constantt, or choose the phase variablef to
be close top/2, which seems necessary if slow synapses
involved in the integration of the head-direction system. F
the parameters used in Figs. 3~c!, 3~d!, we usef580° and
t580 ms, and findvsat54062°/sec.

Similarly, whenDb is large negative over some thresho
value, the right ring is inactivated, and the traveling bump
the left ring moves in opposite direction with the speed sa
rated atvsat also @see Fig. 3~c!#.

So far, our characterization of thev2Db relationship has
been based on special cases. Next, we analyze the dyna
of the double-ring network more systematically by Four
transforming the original continuous field dynamics into o
described by a set of order parameters. Based on these
parameter dynamics, we analyze the solution for travel
bumps, and discuss how to choose synaptic paramete
achieve a large linear range like the one plotted in Fig. 3~d!.

IV. ANALYSIS IN TERMS OF FOURIER MODES

The double-ring network presented here has two spe
properties that aid mathematical treatments. First, it is tra
lation invariant with period 2p. Second, the synaptic inter
action function involves only the first two Fourier comp
nents. Therefore, we can simplify the original dynam
significantly by performing a Fourier transform. Next w
present the analysis, following the similar treatments
Hansel and Sompolinsky@9#.

Let us define the order parameters

r i
0~ t !5E

2p

p

si~u,t !~2p!21du, ~16!

r i
1~ t !5E

2p

p

si~u,t !exp@ i ~u2C i~ t !!# ~2p!21du, ~17!

e

2-4
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wherei 5 l ,r is the index of the left and right rings.r i
0 rep-

resents the mean synaptic activation of neurons in each
The phaseC i(t) is used to maker i

1(t) a real number, or in
other words,r i

1 is the amplitude of the first Fourier mode
andC i(t) is the phase~Fig. 4!.

In terms of these order parameters, the neural activi
Eq. ~2! can be written as

f l~u,t !5@ I l
01I l

1cos~u2F l !#
1, ~18!

f r~u,t !5@ I r
01I r

1cos~u2F r !#
1, ~19!

where

I l
05J0r l

01K0r r
01bl , ~20!

I l
15J1r l

1cos~F l2C l2f!1K1r r
1cos~F l2C r1c!,

~21!

I r
05K0r l

01J0r r
01br , ~22!

I r
15K1r l

1cos~F r2C l2c!1J1r r
1cos~F r2C r1f!.

~23!

The phase variablesF l and F r are the peak of the neura
activities in the left and right ring, respectively~see Fig. 4!.
They satisfy

J1r l
1sin~F l2C l2f!1K1r r

1sin~F l2C r1c!50,
~24a!

K1r l
1sin~F r2C l2c!1J1r r

1sin~F r2C r1f!50.
~24b!

FIG. 4. A snapshot of the traveling bumps in two rings. T
dashed lines denote the synaptic variables and the solid lines r
sent the firing rate.C l andC r are the phases of the second-ord
Fourier components ofsl(u) and sr(u), respectively. The phas
variableF l is defined by the peak location off l(u), andF r is the
peak location off r(u).
04190
g.

s

Denote the half-width of the positivef l(u,t) domain by
u l

c , and that of the positivef r(u,t) domain byu r
c . If f i is a

rectified bump, we haveu i
c5arccos(2I i

0/I i
1) for i 5 l ,r .

Next we assumeu l
c and u r

c are given, in which case the
original dynamics can be viewed as linear. Based on this,
perform a Fourier transform of the network dynamics E
~1a! and ~1b! and derive the dynamics of the order para
eters as follows:

t ṙ i
052r i

01I i
1~ t ! f 0~u i

c!, ~25a!

t ṙ i
152r i

11I i
1~ t ! f 1~u i

c!cos~F i2C i !, ~25b!

tr i
1Ċ i5I i

1~ t ! f 1~u i
c!sin~F i2C i !, ~25c!

wherei 5 l ,r . Similarly we can write down the dynamics o
the higher-order Fourier components. However, the above
of dynamics is decoupled from the higher-order compone
and can be solved independently. In particular, we are in
ested in the traveling bump solutions in both rings, whi
can be described by

r i
05I i

1~ t ! f 0~u i
c!, ~26!

r i
15I i

1~ t ! f 1~u i
c!cos~F i2C i !, ~27!

tv5tan~F i2C i !, ~28!

where v is the velocity of the traveling bumps. Given th
vestibular inputDb, the moving velocity of the bumps ca
be determined numerically from the above set of algebr
equations. Letb̄5F r2C l2c, and u5F r2C r5F l2C l
5a tan(tv). This set of algebraic equations can be furth
simplified into a set of four self-consistent equations w
unknown variablesu, b̄, u l

c , andu r
c :

K1r l
1sin~ b̄ !1J1r r

1sin~u1f!50, ~29a!

J1r l
1sin~u2f!1K1r r

1sin~2u2b̄ !50, ~29b!

I r
15K1r l

1cos~ b̄ !1J1r r
1cos~u1f!, ~29c!

I l
15J1r l

1cos~u2f!1K1r r
1cos~2u2b̄ !, ~29d!

where I r
1 , I l

1 , r l
1 , and r r

1 can be written as functions ofu l
c

andu r
c .

I r
15@brzl2blK0f 0~u l

c!#@K0
2f 0~u r

c! f 0~u l
c!2zlzr #

21,
~30a!

I l
15@blzr2brK0f 0~u r

c!#@K0
2f 0~u l

c! f 0~u r
c!2zlzr #

21,
~30b!

with zi5J0f 0(u i
c)1cosui

c for i 5 l ,r , and the order param
eter r i

1 can be derived from Eq.~27!. Equation~29! can be
solved numerically.

re-
r
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A. Linearity when J1ÄK1

One critical requirement on our model to achieve accur
integration is that the velocity of the traveling bumps sho
be proportional to the vestibular input over all possib
ranges ofDb̂. Our simulation study shows that the netwo
achieves excellent linearity whenJ15K1 ~see Fig. 3 for dif-
ferent choices ofK1 andJ1). One typical result is shown in
Fig. 3~d!. Next we present the analysis to justify this resu

As we have stated, thev2Db̂ curve typically follows a
sigmoidal shape, saturating on both ends whenuDb̂u is larger
than a certain critical valueDb̂c . To measure the quality o
the linearity over the nonsaturated regime ofDb̂, we can
simply compare the difference between the slope at the
gin and the velocity-input ratio at the critical poin

vsat /Db̂c .
First, we determine the criticalDb̂c that gives rise to the

saturation velocity. At the criticalDb̂c , one ring becomes
inactive, and with no loss of generality we assume the
ring is inactive, that is,r l

150, u l
c50. From Eq.~29a!, we

have u52f and b̄52u, and thereforeI r
15J1r r

1 and I l
1

5K1r r
1 . Substituting these into Eq.~30!, we findDb̂c to be

Db̂c5@~K02J0! f 0~u r
c!1K1 /J12cosu r

c#

3@~J01K0! f 0~u r
c!1K1 /J11cosu r

c#21, ~31!

whereu r
c satisfiesJ1f 1(u r

c)cosf51, from whichu r
c can be

determined.
Typically u r

c can only be solved by numerical method
However, an approximate value ofu r

c can be found by
asymptotic expansion of the functionf 1(x)'x3/(3p). Simi-
larly, the function f 0(x) can be approximated byx3/(3p).
Therefore, f 0(u r

c)'1/(J1cosf). Substituting this into Eq.
~31!, we find

Db̂c'@K02J01J1cosf~K1 /J12cosu r
c!#

3@J01K01J1cosf~K1 /J11cosu r
c!#21.

In our network, the phase variablef is chosen to be close t
p/2 to get a large saturation velocity, andJ0 is large negative
to guarantee the stability of the network. Therefore, the te
containing multiplying cosf in the above are small and ca
be neglected in an approximation. After these considerati
the ratio between the velocity and the differential input at
critical value can be approximated by

vsat /Db̂c'tanf~J01K0!@t~K02J0!#21. ~32!

On the other hand, whenJ15K1, the slope at the origin
derived from Eq.~14! is
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S052J1sinf sinuct
21@2~J01K0! f 0~uc!2cosuc#

3@p2uc~J02K0!#21

'tanf sinuct
21@2~J01K0!tanf#@p1~J02K0!uc#

21

'tanf~J01K0!@t~K02J0!#21.

In the above approximation, we have used the asympt
expansion of f 0(uc)'(2J1cosf)21 and assumed uJ0
2K0uuc@p, which holds whenJ02K0 is large negative.
The above result indicates that in this approximation, thev
2Db̂ ratio at the critical value is the same as the slopeS0 at
the origin. This explains the excellent linearity achiev
whenJ15K1.

Another requirement on the integration of the hea
direction system is that the linearity should cover the en
possible range ofDb̂. From Eq.~32!, we have the threshold
differential inputDb̂c'u(K02J0)/(K01J0)u. Provided that
J0 is large negative, to guaranteeDb̂c.1, K0 has to be small
negative or positive, which implies that the interring glob
interaction should be weak inhibitory or excitatory. IfK0 is
large negative, the saturation happens at a point whenDb̂
,1 @Fig. 3~c!#.

In the following, we consider dynamics for the caseJ1
5K1.

B. Solution of the network whenJ1ÄK1

WhenJ15K1, the set of equations used to determine t
thresholds and velocity can be simplified. After reorderi
and simplifying Eq.~29!, we find thatu l

c , u r
c , and u are

determined by

f 1~u l
c!sin~u2f!1 f 1~u r

c!sin~u1f!50, ~33!

J1f 1~u l
c!cosu cos~u2f!1K1f 1~u r

c!cosu cos~u1f!51,
~34!

@~J01K0!~ f 0~u l
c!1 f 0~u r

c!!1cosu r
c1cosu l

c#Db̂

5~J02K0!~ f 0~u r
c!2 f 0~u l

c!!1cosu r
c2cosu l

c ,

~35!

u can be solved for using Eq.~33!. Its dependence onu l
c and

u r
c is given by

v5tanu/t5tanf@ f 1~u l
c!2 f 1~u r

c!#@t„f 1~u l
c!1 f 1~u r

c!…#21.
~36!

Substituting this into Eq.~34!, we derive

J1
2@ f 1

2~u l
c!1 f 1

2~u r
c!12 f 1~u r

c! f 1~u l
c!cos~2f!#

5tan2f@ f 1~u l
c!2 f 1~u r

c!#2@ f 1~u l
c!1 f 1~u r

c!#2211.

The above and Eq.~35! consists of two self-consistent equ
tions, from which the threshold widthsu l

c and u r
c can be
2-6
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DOUBLE-RING NETWORK MODEL OF THE HEAD- . . . PHYSICAL REVIEW E 66, 041902 ~2002!
determined for each differential inputDb̂. Using Eq.~36!,
we can then determine the velocity of the moving bumps
eachDb̂.

The results of this calculation are shown in Fig. 5~a! and
are compared with the simulation results, which verify t
theoretical calculations.

The threshold widthsu l
c andu r

c characterize the width o
the tuning curves of the head directions. Its dependence
the head moving velocity can be measured experiment
We plot the change of them as a function ofDb̂ in Fig. 5~b!
obtained from the above calculation. Besides thresh
width, another characterization of the neural responses is
peak firing rates of the traveling bumps in each ring, wh
can be written as

Pr5I r
1~12cosu r

c!, ~37!

Pl5I l
1~12cosu l

c!, ~38!

for the right and left ring, respectively. Here,

I r
15I l

1

52Db$~K02J0!@ f 0~u r
c!2 f 0~u l

c!#

1cosu l
c2cosu r

c%21.

The result is plotted in Fig. 5~c!, 5~d!. It shows thatPr and
Pl are approximately linearly related to the differential inp
Db̂.

FIG. 5. Results from the theoretical calculations whenJ15K1.
The velocity of the traveling bumps as a function of the input
plotted in ~a!, which verifies the theoretical and the simulation r
sults. The width of the tuning curves are shown as a function of
input in ~b!. The peak firing rates of the two bumps are modula
by Db, with the peak rate for each ring shown in~c! and the dif-
ference between them shown in~d!.
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V. STABILITY

The network is translation invariant. There are poten
homogeneous solutions. Assumesl(u)5ul and sr(u)5ur ,
and substitute them into Eq.~1!. We find ul5J0ul1K0ur
1bl andur5J0ur1K0ul1br , which leads to the homoge
neous solutions

ur5b0~12J02K0!211Db~12J01K0!21, ~39!

ul5b0~12J02K0!212Db~12J01K0!21. ~40!

If J01K0,1, thenur andul are both positive, so the homo
geneous solutions exist.

Our network works in a regime where a stationary bum
develops whenDb50 and moves whenDbÞ0. To guaran-
tee that the network works in such a regime, we have
choose synaptic parameters such that the homogeneous
tion becomes unstable.

The stability of the homogeneous solution can be ea
characterized by perturbing the dynamics around the ho
geneous solution. In terms of the first two Fourier comp
nents, the perturbed dynamics can be written as

td ṙ l
05~J021!dr l

01K0dr r
0 , ~41!

td ṙ r
05~J021!dr r

01K0dr l
0 , ~42!

for the first Fourier component, and

td ṙ l
15~J1/2 cosf21!dr l

11K1/2 cosfdr r
1 , ~43!

td ṙ r
15~J1/2 cosf21!dr r

11K1/2 cosfdr l
1 , ~44!

for the second Fourier component. The condition for E
~41! and ~42! to be stable isJ01uK0u,2. This is typically
satisfied if we chooseJ0 to be large negative. Forr l

1 and r r
1

to be stable requires thatJ1cosf,1, provided thatJ15K1 as
we have constrained. Therefore, to break the stability of
homogeneous solution, we can chooseJ1.1/cosf.

The stability of the stationary bump or traveling bum
can be analyzed by perturbing the dynamics defined by
~25! around the stationary or traveling bump solutions. T
perturbed dynamics involves many terms, and the details
not included in this paper. The phase diagram of solutio
when Db̂50 obtained from simulation is shown in Fig. 6
This phase diagram does not include all possible soluti
among all range of synaptic parameters. For example, if
we choose parameters such thatK1,J1sinf, the stationary
bump solution will not exist and the network will yield
lurching bump solution whose shape changes in time. For
stability of the traveling bump solutions whenDb̂Þ0, the
bifurcation line from the homogeneous solution is the sa
as the one shown in Fig. 6, but the boundary where
traveling bump solution diverge is different for differentDb̂.

e
d
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VI. ADT AND POS HEAD-DIRECTION CELLS

Head-direction cells have been found in many brain are
each having different tuning properties. Lesion studies
anatomical evidence suggest that the core attractor netw
of the head-direction system is located in the lateral ma
millary nucleus~LMN ! and dorsal tegmental nucleus~DTN!,
whereas downstream nuclei such as ADT and POS rec
feedforward input from the attractor network@10,11#.

As shown in the preceding sections, the activities of n
rons in the double-ring network are not only tuned to he
direction, but modulated by head velocity also~see Fig.
5c,d!, which is consistent with the properties of cells fou
in LMN and DTN @12,13#.

Head-direction cells in two downstream nuclei ADT a
POS have very different tuning properties. During he
movement, tuning curves in ADT are usually skewed w
preferred directions tilted toward the directions in the futu
In contrast, POS cells usually have similar tuning curv
irrespective of the directions of head movement@14,15#.

Let us assume ADT and POS read out responses from
double-ring network. Two simple readout schemes are
average and maximum of the activities in the two ring
Next, we analyze these two simple readout methods of
firing ratesf l and f r . We find that the two readout method
can indeed approximate response behavior resembling th
ADT and POS neurons@14–16,6,7#.

Suppose ADT cells read out activities of the double ri
using a maximum operation,z(u)5max„f r(u), f l(u)… ~see
Fig. 7!. Recall that there is an activity offset between the t
rings @cf. Eq. ~5!#. When the head rotates counterclockwis
the activity on the left ring is larger than the activity on th
right ring, so the tuning ofz(u) is biased to the right. Simi-
larly, for clockwise turns,z(u) is biased to the left. In eithe
cases, the tuning curve is skewed toward head direction
the future, which could be a mechanism for anticipatory c
ing.

FIG. 6. Phase diagram whenDb50. K15J1, and other param-
etersK0525, f580°, andc550°. The marginal phase is th
desired parameter regime, in which a stationary bump devel
although the location of the bump can be arbitrary.
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Suppose POS cells read out activities of the double r
using an averaging operation,y(u)51/2@ f r(u)1 f l(u)# ~Fig.
7!. In contrast to those of ADT cells, the tuning curves
POS cells are not significantly biased toward either dir
tions, because averaging is a symmetric operation and
information about the direction of head rotations is lost.

VII. DISCUSSION ON SYNAPTIC PARAMETERS

Here we discuss how the various connection parame
contribute to the double-ring network to function as an in
grator. In particular, we discuss how parameters have to
tuned for proper integration to occur over a large inDb and
in v.

~i! t: By assumption the synaptic time constantt is large.
t has the simplest effect of all parameters on the integra
properties. According to Eq.~14!, t scales the range ofv.
Notice that if t were small, a large range ofv could be
trivially achieved. We show here how to achieve proper
tegration with larget.

~ii ! f: The connection offsetf between neurons receiv
ing similar vestibular input is the sole parameter besidet
that determines the saturating head velocity, beyond wh
integration is impossible. According to Eq.~15!, the saturat-
ing velocity is large iff is close to 90°~we want the satu-
rating velocity to be large!. In other words, for good integra
tion, excitatory connections should be strongest~or
inhibitory connections weakest! for neuron pairs with pre-
ferred head directions differing by a little less than 90°.

~iii ! c: The connection offsetc between neurons receiv
ing different vestibular input only affects the shift in activit
profiles of the two rings. It determines how much the tuni
curves of the ADT head-direction cells are tilted, that is, t
anticipatory time of the ADT cells.

s,
FIG. 7. Snapshots of the activities on the two rings for count

clockwise ~CCW! head rotation~a! and clockwise rotation~CW!
~b!, respectively. Reading out the activities by averaging and b
maximum operation~c, d!.
2-8
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~iv! K0 and K1: The interring connections should b
mainly weak inhibitory, or excitatory, which implies thatK0
should not be too negative. The intuitive reason is the
lowing. We want the integration to be as linear inDb as
possible, which means that we want our linear expansi
Eqs.~9! and~10! to deviate as little as possible from Eq.~4!.
Hence, the differential gain between the two rings should
small, which is the case when the two rings excite each ot
The interring excitation makes sure, even for large value
Db, that there are comparable activity levels on the t
rings. This is one of the main points of this study.

~v! J0 andJ1: The intraring connections should be main
inhibitory, which implies thatJ0 should be strongly negative
The reason for this is that inhibition is necessary to resul
proper and stable integration. Since inhibition cannot co
from the interring connections, it has to come fromJ0. No-
tice also that according to Eq.~7!, J1 cannot be much large
thanK1. If J1.K1 /sinf, the model cannot model the pe
sistent activities for no head-movement case.

VIII. CONCLUSION AND REMARKS

We have presented a different model for neural integra
in the head-direction system with potentially slow synaps
The model is essentially a push-pull model with two pop
lations of neurons receiving differential vestibular inpu
The difference in input breaks the balance between the in
actions of two rings that is maintained during stationary he
states, and causes activity bump developed in both ring
t.

,
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move around. With carefully chosen synaptic parameters,
demonstrate that the integration can be achieved with h
precision.

Synapses with slow dynamics are important for attrac
models described here or previously. There are two reas
for this. First, all the attractor models are described in ter
of firing rate of neurons. These rate model dynamics can
derived from spiking neuronal dynamics using the method
averaging@17#, which is valid only for slow synapses. Se
ond, it has been shown that the directional tuning proper
of head-direction cells can be maintained in the dark
several minutes, which contrasts significantly with the tim
constant of individual synapses, which is in the order of 1
for fast and 100 ms for slow synapses. This requires t
synaptic connection parameters of the attractor models n
to be precisely tuned. Slow synapses weaken the precise
ing requirement.

The head-direction system is also influenced significan
by visual landmarks@18#. It is believed that the visual inpu
is used to calibrate the directional heading, and also work
a feedback signal to adjust synaptic parameters for achie
accurate integration. We are currently investigating learn
rules that use the visual feedback to tune synaptic par
eters. The results will be reported elsewhere.
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